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Abstract
We study numerically the dynamics of a one-electron wavepacket in a two-
dimensional random lattice with long-range correlated diagonal disorder in the
presence of a uniform electric field. The time-dependent Schrödinger equation
is used for this purpose. We find that the wavepacket displays Bloch-like
oscillations associated with the appearance of a phase of delocalized states in
the strong correlation regime. The amplitude of oscillations directly reflects the
bandwidth of the phase and allows us to measure it. The oscillations reveal two
main frequencies whose values are determined by the structure of the underlying
potential in the vicinity of the wavepacket maximum.

1. Introduction

Anderson localization theory describes many relevant aspects concerning the nature of one-
electron states and collective excitations in random media [1–3]. In one-dimensional (1D)
and two-dimensional (2D) electronic systems with time-reversal symmetry this theory predicts
the absence of a disorder-driven metal–insulator transition for any degree of uncorrelated
disorder. Recently, however, it has been reported that the presence of short-range [4–10] or
long-range correlations [11–14] in disorder acts towards the appearance of truly delocalized
states in 1D Anderson models. This theoretical prediction was put forward to account for
the transport properties of semiconductor superlattices with intentional short-range correlated
disorder [15] and microwave transmission spectra of single-mode waveguides with inserted
long-range correlated scatters [16].

In 2D, the existence of extended states due to correlations in disorder has also been proved.
Thus, in [17] the authors considered a two-dimensional striped medium in the (x, y) plane
with on-site correlated disorder. The on-site energies were generated by a superposition of an
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uncorrelated term in the x-direction and a long-range correlated contribution along y-direction.
It was predicted that this model displays a disorder-driven Kosterlitz–Thouless metal–insulator
transition with strong correlations in disorder. More recently, the effect of an isotropic scale-
free long-range correlated disorder on the one-electron eigenstates of the 2D Anderson model
has been studied [18]. To introduce long-range correlations in both the x- and y-directions,
the site energies were chosen to have a power-law spectral density S(k) ∝ 1/kα2D , where
k is the magnitude of the typical wavevector characterizing the energy landscape roughness.
The metal–insulator transition induced by strong correlations (α2D > 2) was monitored by
measuring the participation number exponent from the long-time behaviour of the wavefunction
spatial distribution [18].

It is well known that a uniform electric field applied to a periodic lattice causes the
dynamic localization of electron wavepackets and gives rise to their oscillatory behaviour,
the so-called Bloch oscillations [19]. Due to the advances in semiconductor technology,
it has become possible to monitor the Bloch oscillations in uniform superlattices [20].
Remarkably, this phenomenon is not restricted to electronic systems. Recently, the authors
of [21] reported the first experimental observation of photonic Bloch oscillations in two-
dimensional periodic systems. In spite of the fact that the periodicity of the potential has
been admitted to be the key ingredient for Bloch oscillations to exist, it has been demonstrated
recently that a 1D Anderson model with diagonal long-range correlated disorder displays Bloch
oscillations in the strong correlation limit [22]. It turned out that the period of oscillations
agrees well with the one in an ideal Bloch band, while the amplitude of oscillations is
proportional to the width of the delocalized phase, which has been predicted to appear in the
strong correlation limit [11]. The spectral counterpart of Bloch oscillations—Wannier–Stark
quantization of the energy spectrum—has also been found to be a remarkable feature of the
model [23].

In this paper we focus on the interplay between the delocalization effect, arising from the
long-range correlated disorder, and the dynamic localization, caused by an electric field acting
on the system. By numerically solving the 2D time-dependent Schrödinger equation for the
complete Hamiltonian, we compute the behaviour of an initial Gaussian wavepacket in the
presence of a uniform electric field. We found clear signatures of Bloch-like oscillations [22]
of the wavepacket between the two mobility edges of the phase of delocalized states. The
amplitude of the oscillatory motion of the centroid allows us to determine the bandwidth of the
delocalized phase.

2. Model and formalism

We consider a 2D electron moving in a random long-range correlated potential on a regular
N × N lattice of unitary spacing and subjected to a uniform electric field F . The corresponding
tight-binding Hamiltonian reads [3]

H =
∑

m

(εm + U ·m) |m〉〈m| + J
∑

〈mn〉
(|m〉〈n| + |n〉〈m|) , (1)

where |m〉 is a Wannier state localized at site m = mxex + m yey , εm is its energy and
U = eF is the energetic bias, e being the electron charge. Here ex and ey are the corresponding
Cartesian unit vectors. We will assume that the electric field is applied along the diagonal of
the square lattice. Then U = U(ex + ey)/

√
2. Transfer integrals are restricted to nearest-

neighbour sites and are given by J . Hereafter, we fix the energy scale by setting J = 1. The
long-range correlated sequence of site energies εm is generated by making use of a Fourier
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transform method as follows

εm =
N/2∑

kx =1

N/2∑

ky =1

ζ(α2D)

kα2D/2
cos

(
2πmxkx

N
+ φ

(x)
kx ky

)
cos

(
2πm yky

N
+ φ

(y)
kx ky

)
, (2)

where k2 = k2
x + k2

y , and φ(x)kx ky
and φ(y)kx ky

are N2/2 independent random phases uniformly

distributed in the interval [0, 2π] and ζ(α2D) is a normalization constant, such that 〈ε2
m〉 = 1.

We also shift the on-site energies in order to have 〈εm〉 = 0. The Wannier amplitudes evolve
in time according to the time-dependent Schrödinger equation which can be written as [3]

iψ̇m = (εm + U · m) ψm + (
ψm+ex + ψm−ex + ψm+ey + ψm−ey

)
, (3)

with h̄ = 1. Having introduced the model of disorder, we numerically solve equation (3) to
study the time evolution of an initially Gaussian wavepacket of width σ centred at site m0

ψm(t = 0) = A(σ ) exp

[
− (m − m0)

2

4σ 2

]
. (4)

Once equation (3) is solved for the initial condition (4), we compute the projection of the mean
position of the wavepacket (centroid) along the field direction

R(t) = 1√
2
(ex + ey) ·

∑

m

m|ψm(t)|2. (5)

3. Results and discussion

In the absence of disorder (εm = 0), all the states are dynamically localized by the uniform
electric field and the centroid oscillates in time, revealing Bloch oscillations [19]. The
amplitude and the period of these oscillations are estimated from semiclassical arguments (see,
e.g., [24]) as LU = W/U and τB = 2π/U , respectively, where W is the width of the Bloch
band in units of the transfer integral J (W = 8 in our case). The frequency of the Bloch
oscillations is given by ω = 2π/τB and, therefore, is equal to the bias magnitude U in the
chosen units.

To study joint effects of the bias and correlated disorder, we performed numerical
simulations of equation (3). In all simulations square lattices of size N × N = 250 × 250
were used. The initial wavepacket was considered to be located in the centre of the lattice,
m0 = (N/2)(ex + ey), and its standard deviation was set to σ = 1.

In figure 1(a) we plotted the centroid time behaviour of a biased wavepacket (U = 1) in a
weakly correlated random potential (α2D = 1). Recall that in the absence of bias all the states
are localized for such a value of the correlation exponent α2D [18]. As is seen, switching on
the bias does not lead to coherent oscillations of the wavepacket. A more detailed inspection
of these numerical data shows that Bloch oscillations in the weak correlation regime (α2D < 2)
can be observed only for a short initial transient. They are strongly damped by disorder and
rapidly transformed into an incoherent motion of the centroid, presented in figure 1(a). To
provide a further confirmation of this claim, we calculated the Fourier spectrum R(ω) of the
centroid R(t). Figure 1(b) shows the results after averaging over 50 realizations of disorder.
We observe that the Fourier spectrum R(ω) is rather broad, suggesting that R(t) is similar to a
short-range correlated noise signal with no typical frequency.

A rather different time-domain dynamics is found in the limit of strongly correlated
disorder, α2D > 2, when a phase of extended states emerges in the centre of the band in the
unbiased system [18]. We will show below that these states drastically affect the dynamics of
the wavepacket, that now resembles the oscillatory motion of the electron in a biased disorder-
free lattice. In figures 2 and 3 we plotted the centroid time behaviour of a biased wavepacket
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Figure 1. (a) Centroid dynamics of a biased wavepacket (U = 1) in a correlated random
potential (2) with α2D = 1. (b) Fourier transform of the centroid, averaged over 50 realizations
of disorder.
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Figure 2. Centroid dynamics of a biased wavepacket in a correlated random potential (2) with
α2D = 4 calculated for two bias magnitudes (a) U = 1 and (b) U = 1.25 (left panel). One can see
a clear signature of sustainable Bloch-like oscillations. The corresponding Fourier spectra of the
centroid, obtained by averaging over 50 realizations of disorder, are shown in the right panel.

for two values of the correlation exponent α2D = 4 (figure 2) and α2D = 5 (figure 3). Two
magnitudes of the bias, U = 1 and U = 1.25, were considered for each value of α2D.
Figures 2 and 3 clearly demonstrate the occurrence of sustainable Bloch-like oscillations. Their
amplitudes Lc are found to be Lc ≈ Wc/U , where Wc is independent of the applied bias U .
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Figure 3. Same as in figure 2 but for α2D = 5. The inset shows the Fourier spectrum of the
centroid for a single realization, clearly illustrating the fact that the oscillations reveal two dominant
frequencies around ω = U .

From the data in figure 2 we obtain Wc ≈ 2. This value agrees remarkably well with the width
of the band of extended states reported in [18].

The Fourier spectra R(ω) of the centroid, computed after averaging over 50 realization of
disorder, show a single broad peak at about ω = U . The peak frequency nicely agrees with the
one in an ideal Bloch band. Looking, however, at the Fourier spectrum of a single realization
(as shown in the inset in figure 3), one notices that R(ω) actually has two narrow peaks. The
frequency of these peaks fluctuates from one realization to the other, which after averaging
results in a broad single-peaked spectral density. This splitting is not found in 1D long-range
correlated potentials.

With the aim of elucidating the anomalies found, we present a simplified model that sheds
light on the origin of this doublet structure in the Fourier spectrum of the centroid oscillations.
To this end, we recall that the random site potential εm is given by the sum of harmonic
terms (2). The amplitude of each term decreases upon increasing the harmonic number. For
sufficiently high values of α2D, the first term in the series will be dominant, while the others
are considerably smaller. Consequently, the site potential for a given realization represents a
harmonic function, perturbed by a coloured noise (see [25]). Based on this observation, we keep
only the first term in (2) and neglect all others in our further arguments. Thus, the ‘random’
site potential now is εm = ζ cos (2πmx/N + φ(x)) cos (2πm y/N + φ(y)), where phases φ(x)

and φ(y) can be arbitrarily chosen.
The effective local bias is a superposition of the external one and the gradient of the local

potential, U eff
m = U − ∇mεm. At the initial position, m0 = (N/2)(ex + ey), its components

will be given by

U eff
x = U + (2πζ/N) sinφ(x) cosφ(y),

U eff
y = U + (2πζ/N) sinφ(y) cosφ(x).

For φ(x) = φ(y), the components of the effective bias are identical. As the frequency of the
Bloch oscillations is proportional to the magnitude of the effective bias, only a single dominant
frequency shall be present in this case. One just observes this in figure 4(a). Notice that
for the particular case plotted (φ(x) = φ(y) = 0), the local bias at the central position does
not acquire any contribution coming from the harmonic potential, which results in a null shift
of the oscillation frequency. However, for the general case of φ(x) �= φ(y), the local bias
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Figure 4. Left panels show the centroid time behaviour of a biased wavepacket moving in a potential
εm = ζ cos(2πmx/N+φ(x)) cos(2πmy/N+φ(y)) for the two sets of phases φ(x) and φ(y) indicated
in the plots. Right panels show the corresponding Fourier spectra.

components will differ by an amount of the order of 1/N . Therefore, Bloch oscillations will
have two dominant frequencies. This feature is exemplified in figure 4(b) where we used
φ(x) = 0 and φ(y) = 0.5. For this case U eff

x at m0 is not influenced by the local potential
and the corresponding oscillation frequency is not shifted. On the other hand, the typical
frequency associated with oscillations along the y-direction is shifted from the bare frequency
ω = U = 1. The two-peak structure depicted in the inset of figure 3(a) and the right-lower
panel of figure 4(b) has, therefore, its origin in the distinct contributions given by the gradient
of the local potential to the effective local bias. Averaging over random phases φ(x) and φ(y)

results in a broader Fourier spectrum R(ω) around ω = U = 1 with a mean width of the order
of 1/N .

4. Summary and concluding remarks

We studied the electron motion on a 2D square lattice with on-site long-range correlated
disorder in the presence of an external uniform electric field. Long-range correlations were
introduced by using a 2D discrete Fourier method which generates an appropriate disorder
distribution with spectral density S(k) ∝ 1/kα2D . By numerically solving the Schrödinger
equation, the time evolution of an initial Gaussian wavepacket was investigated, with the aim
of finding coherent Bloch oscillations. Our results suggest that the oscillations are strongly
damped in the weak correlation limit, α2D < 2, when all the states are localized because of
disorder. The motion of the wavepacket on a large timescale is chaotic in this case. The
sustained oscillations arise for α2D > 2, when a phase of the extended states emerges at
the centre of the band. The amplitude of oscillations was found to be proportional to the
energy difference between the two mobility edges of the delocalized phase [18], in good
agreement with semiclassical arguments. Thus, we arrive at one of the principal conclusions
of this work: (i) there exist clear signatures of the Bloch oscillations of a biased Gaussian
wavepacket in the strong correlation regime (α2D > 2), originating from the presence of the
two mobility edges, and (ii) the oscillations exhibit two dominant frequencies because the local
bias has a contribution from the site energy potential. This is understood using semiclassical
arguments.

The richness of the predicted dynamical behaviour can lead to new electro-optical devices,
based on the coherent motion of confined electrons. We hope that the present work will
stimulate experimental activities in this direction.
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[17] Liu W S, Chen T and Xiong S J 1999 J. Phys.: Condens. Matter 11 6883

Liu W-S, Liu S Y and Lei X L 2003 Eur. Phys. J. B 33 293
[18] de Moura F A B F, Coutinho-Filho M D, Raposo E P and Lyra M L 2004 Europhys. Lett. 66 585
[19] Bloch F 1927 Z. Phys. 52 555
[20] Lyssenko V G, Valusis G, Loser F, Hasche T, Leo K, Dignam M M and Kohler K 1997 Phys. Rev. Lett. 79 301
[21] Trompeter H, Krolikowski W, Neshev D N, Desyatnikov A S, Sukhorukov A A, Kivshar Y S, Pertsch T,

Peschel U and Lederer F 2006 Phys. Rev. Lett. 96 053903
[22] Domı́nguez-Adame F, Malyshev V A, de Moura F A B F and Lyra M L 2003 Phys. Rev. Lett. 91 197402
[23] Dı́az E, Domı́nguez-Adame F, Kosevich Yu A and Malyshev V A 2006 Phys. Rev. B 73 174210
[24] Ashcroft N W and Mermin N D 1976 Solid State Physics (New York: Saunders College Publishers) p 213
[25] Dı́az E, Rodrı́guez A, Domı́nguez-Adame F and Malyshev V A 2005 Europhys. Lett. 72 1018

7

http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1103/PhysRevLett.42.673
http://dx.doi.org/10.1088/0034-4885/56/12/001
http://dx.doi.org/10.1088/0953-8984/1/44/017
http://dx.doi.org/10.1103/PhysRevLett.65.88
http://dx.doi.org/10.1103/PhysRevLett.66.1366
http://dx.doi.org/10.1126/science.252.5014.1805
http://dx.doi.org/10.1088/0953-8984/4/49/022
http://dx.doi.org/10.1088/0305-4470/27/11/022
http://dx.doi.org/10.1103/PhysRevB.49.147
http://dx.doi.org/10.1103/PhysRevB.47.10727
http://dx.doi.org/10.1016/0375-9601(92)90114-2
http://dx.doi.org/10.1088/0953-8984/6/26/015
http://dx.doi.org/10.1088/0305-4470/27/14/008
http://dx.doi.org/10.1103/PhysRevB.55.10625
http://dx.doi.org/10.1103/PhysRevLett.81.3735
http://dx.doi.org/10.1016/S0378-4371(98)00632-3
http://dx.doi.org/10.1103/PhysRevLett.82.4062
http://dx.doi.org/10.1103/PhysRevB.63.041102
http://dx.doi.org/10.1140/epjb/e2002-00330-7
http://dx.doi.org/10.1016/S1386-9477(02)00261-8
http://dx.doi.org/10.1016/S1386-9477(00)00068-0
http://dx.doi.org/10.1063/1.127068
http://dx.doi.org/10.1088/0953-8984/11/36/306
http://dx.doi.org/10.1140/epjb/e2003-00169-4
http://dx.doi.org/10.1209/epl/i2003-10238-4
http://dx.doi.org/10.1103/PhysRevLett.79.301
http://dx.doi.org/10.1103/PhysRevLett.96.053903
http://dx.doi.org/10.1103/PhysRevLett.91.197402
http://dx.doi.org/10.1103/PhysRevB.73.174210
http://dx.doi.org/10.1209/epl/i2005-10321-x

	1. Introduction
	2. Model and formalism
	3. Results and discussion
	4. Summary and concluding remarks
	Acknowledgments
	References

